OAuth2 and REST Course

OAuth2

General
The OAuth2 mechanism (slides).

Practical - Google OAuth2

1.

10.

Create a web app:
a. Run Studio (v18.2) as Administrator (since creating a new WebApp)

b. Create a new workspace and a Desktop Web Project

c. Use OAuth2 library (included on USB stick)

d. Copy the AppHTML/OAuth2 directory from the library into AppHTML in your
workspace

€. Add<script src="OAuth2/0Auth2.js"></script> line to index.html

f. Create a Web View

g. Addtheline Delegate Set phoDefaultView to Self

h. Rename the default web form to oScope & label "Scopes:"

i.

Drag in an 0OAuth2 object from the OAuth2 section of the Class Palette

j- Drag in a button and have OnClick send Login of the oOAuth object
Sign up as a Google developer (need a Google account)
Reqgister your app: https://developers.google.com/ then:
https://console.developers.google.com/
Go to "Credentials" and Create a Project (choose a name for the project) - choose
"OAuth 2.0" and "Web Application"
Create credentials:

a. Copy the client ID to the property wpsClientID in your OAuth object

b. Copy the client secret to the psClientSecret property
Configure Consent Screen: Name, Home page & Logo URL then click Save
Select "Web application" and give it a name, a "JavaScript origins" of http://localhost
and a "Redirect URI" of http://localhost/GoogleTest/OAuth2/Callback.html
Go to https://developers.google.com/identity/protocols/OAuth2WebServer scroll
down to "Redirecting to Google's OAuth 2.0 server" then select the HTTP/REST tab
Copy the endpoint address (https://accounts.google.com/o/oauth2/v2/auth) to the
wpsOAuth2Url property of the object in your program
Looking at the list of parameters for HTTP/REST access, the only non-optional one
that the OAuth2 component does not deal with automatically is scope, which
depends on the specific API(s) we want to access. We will use the Google Drive
API, so doing a search on "Google Drive API scope" we should find that
"https://www.googleapis.com/auth/drive" should work (full access), so we will set
the psValue property of the scopes form to that. We use "AddParam” in the OAuth2
object's OnBeforeLogin event to set it to whatever was entered in the "scopes”



https://developers.google.com/
https://console.developers.google.com/
http://localhost/
http://localhost/GoogleTest/OAuth2/Callback.html
https://developers.google.com/identity/protocols/OAuth2WebServer#overview

form (we will also send ClearParams first for safety). However we will also add
another parameter "access_type" with a value of "off1line".

11. On that web page
(https://developers.google.com/identity/protocols/OAuth2WebServer) scroll down to
"Handling the OAuth 2.0 server response and select the HTTP/REST tab

12. There we see that the first field we have to pass in our request for an access token is
called "code" - the OAuth2 class defaults this to "token", so in our OAuth2 object we
need to add the line Set wpsResponseType to "code"

13. Scrolling down that page some more, we can see the definition of what a request for
an access token looks like - there we can see that:

a. The server to call is www.googleapis.com, which we set the psTokenHost of
the OAuth object to
b. The path on that is /oauth2/v4/token, which we set the psTokenPath of the
OAuth object to
14. Now let's add some more controls to our web view so we can see what is going on:
a. Beside the "Login" button add an "Error" form, but Set pbVisible to

False

Add a Web Label with Set psCaption to "Not logged in"

Add a "Token" form so we can see the access token we will hopefully get

Add an "Expires" form so we can see the time it is valid for

In the OAuth2 object's OnLogin event add the code:

String sToken
Integer iExp

®aooT

WebSet psCaption of oLoginState to "Logged in"

WebGet wpsAccessToken to sToken
WebGet wpiExpiresIn to iExp
WebSet psValue of oToken to sToken
WebSet psValue of oExpires to iExp
WebSet pbVisible of oError to False

f. In the OAuth2 object's OnLoginFail event add the code:
String sErr sErrDesc

WebSet psCaption of olLoginState to "Login failed"

WebGet wpsErrorCode to sErr
WebGet wpsErrorDesc to sErrDesc
WebSet psValue of oError to ;

(sErr + ":" * sErrDesc)
WebSet pbVisible of oError to True

15. With luck and a following wind, we should now be ready to request access, so
compile/run the application and when it comes up in the browser, click the login
button


https://developers.google.com/identity/protocols/OAuth2WebServer

Testing our access

1. Once we have that working, we'd like to test that it actually gives us access - exit the
debugger and:

a.

b.

Add Sset_Argument_Size 10000000 (a big number - ~10Mb in this case)
at the top of the view

Drag a cHttpTransferUIG object into the view (if you wish, right-click the class
and select "Go To Definition" to see what has been added in that subclass)
Add an "API Call" form so we can enter what to call to test that it works - Set
psValue to "drive/v2/files" (we'll look at where that comes from
later)

Add a Procedure MakeAPICall to the view - empty for now

Add a "Call API" button to trigger doing that: Send CallAPI inits OnClick
Add a Web Edit to display the result we get back (or news of what went
wrong!) - Set pbFillHeight to True so it will have all the rest of the
vertical space

In the MakeAPICall procedure, add the following code:

String sPath sResp sToken

Integer iOK iStat

Send ClearHeaders of oHttp
Send Reset of oHttp

Set psRemoteHost of oHttp to "www.googleapis.com"
Set piRemotePort of oHttp to rpHttpSSL
Set peTransferFlags of oHttp to ifSecure
WebGet wpsAccessToken of oOAuth to sToken
WebGet psValue of oCall to sPath
Get AddHeader of oHttp ;
"Authorization"

("Bearer" * sToken) to iOK

Get HttpVerbAddrRequest of oHttp ;
sPath ;
0 ;
0 ;
False ;
"GET" to iOK

If iOK Begin
Get ResponseStatusCode of oHttp to iStat
Get psData of oHttp to sResp

If ((istat >= 200) and (iStat <= 299)) Begin
WebSet psValue of oResult to sResp



End
Else Begin
WebSet psValue of oResult to ;
("HTTP Error:" * String(iStat) * sResp)
End

End
Else Begin
WebSet psValue of oResult to ;
("HTTP GET from" * ;
psRemoteHost (oHttp (Self)) + "/" + sPath * ;
"failed")
End
2. Compile/run the app again; click the login button, then when that has completed, click
the Call API button
3. If you have a lot of files in Google Drive, the call may take a few seconds to complete
4. If everything worked, you should see a big pile of JSON data in the Results form

Unravelling JSON
(slides)

Using RESTGen

Service providers like Google generally provide some form of sample JSON to illustrate what
you need to send to their service operations and what you should get back from them.

If we do a Google search for - in this case - Google Drive REST API, we should find it quite
quickly: https://developers.google.com/drive/v2/reference/. We can now see where the host

- www.googleapis.com - and base path - drive/v2/ - we used above came from. Scrolling down
to the "list" operation we can see that final part of that path is "files" and the HTTP verb to use is
GET. If we click on that "list" operation, we get to a page that describes it in more detail. Further
down there is a "Try it!" section - ensure that you switch the toggle "Authorize requests using
OAuth 2.0" to "on", when you should be presented with a pop-up list of scopes to authorize. You
can then click the "EXECUTE" button farther down the page to see the output, which should be
essentially the same as we saw in our Results Web Edit.

e Run the RESTGen program (included on USB stick)
In the webapp's Results edit, go down to the end of the first item in the "items" array
(so just before the second occurance of "kind": "drive#file")
e Position the cursor after the closing "}", but before the preceding comma, then
holding down the shift-key scroll to the end of the data and click just after the closing
"" of the last list item, then press "Del", removing all but the first item in the "items"
array
Select all (Ctrl-A) then copy (Ctrl-C)
Paste into RESTGen's JSON window


https://developers.google.com/drive/v2/reference/
http://www.googleapis.com/

We should now have a fair slice of data, but not so much as to overwhelm RESTGen's
window.

Give the outer struct a name - something like tGoogleDriveList. Tabbing through to the inner
struct prefix window will copy that value to there as well. You can make choices about where
the generated packages will go and how they will reference each other - hint: if you put
RESTGen on your Studio's "Tools" menu with a parameter of "<workspace>", it will already
have sensible defaults for these.

Click the "Generate" button.

If we have done that correctly then the output window should show a list of the package
RESTGen has created, plus the fact that there were zero warnings. (Note: the commonest
cause of warnings is empty arrays in the sample JSON - if they are empty the program can't
guess what type should be in them, so it defaults them to strings, but if it is not an array of
strings, you should manually correctly populate the JSON and click "Generate" again until
there are no warnings - it will silently overwrite previously generated packages without
warning, so be aware of that also.)

A Windows Explorer window should also open showing the packages in their directory.

(Following Sture's convention in his VDFXray program, all of the generated handler objects
are called "oStructHandler_nameOfTheStruct.)

Making calls to the API

Now we can start to use the data, rather than simply displaying it as raw JSON.

Back in the Studio, we now "Use" the outer struct package (it will "Use" the inner ones in
turn) and in our code we can declare a variable of the type name we told it.

In the list of Use statements add another: Use ApiStructs\tGoogleDriveFiles.pkg
(or whatever you called it).

Drag a cWeblList onto your view (call it oFilesList), beneath the Results edit, Set
pbDataAware to False and Set pbFillHeight to True, then add three columns -
two cWebColumns and a cWebColumnCheckbox: "Title", "Owner" and "Shared".

Add an OnManualLoadData Procedure containing the following:
tGoogleDriveFiles tFiles
UChar[] ucaTest
Integer iOldSize i iMax
String sJson



Get pucaData of oHttp to ucaTest

Get_Argument Size to iOldSize

Set Argument Size (iOldSize max (SizeOfArray(ucaTest) + 1000))
Get psData of oHttp to sJson

Send JsonStringToStruct of oStructHandler tGoogleDriveFiles ;
(&sJson) (&tFiles)

Set_Argument Size iOldSize
Move (SizeOfArray(tFiles.items) - 1) to iMax

For i from 0 to iMax
Move i to aTheRows[i].sRowID
Move tFiles.items[i].title to ;
aTheRows[i] .aCells[0] .sValue
Move tFiles.items[i].ownerNames[0] to ;
aTheRows[i] .aCells[1l] .sValue
Move tFiles.items[i].shared to ;
aTheRows[i] .aCells[2] .sValue
Loop

In our call, in the "success" block (iOK True and iStat in the 200 range), we can now add the
line:

Send GridRefresh of oFileslist

Once we have the data in our struct, we don't need to worry about the size of the data as a
single string any more, so we can change the line in our "success" block setting the result
object's psValue to just "Success!" and remove the Set_ Argument_Size 10000000 at the top
of the view as well.



