
OAuth 2
The Key to Web REST APIs

Mike Peat
Unicorn InterGlobal

A mechanism for allowing applications access to user
resources held in third-party services such as:
• Google
• Microsoft Office 365
• Facebook
• And many, many more

Without the user having to share their credentials with the
applications, while limiting the “scope” and duration of that
access

OAuth2

• OAuth2 is generally used to access REST APIs
• REST: REpresentational State Transfer
• An HTTP mechanism where each operation is

represented by a specific combination of URI
and HTTP verb

• Data interchange is usually via JSON
(JavaScript Object Notation)

REST APIs

REST APIs generally use a wider set of verbs
than the familiar GET and POST, providing the
equivalent of database CRUD operations:
• POST Creates (or Updates) data
• GET Reads data
• PATCH Updates data
• DELETE Deletes data (Well... Doh!)

• PUT also Creates data
(PUT is less commonly used than the others - POST is the usual "create" verb)

HTTP Verbs

• The first step is to register your application with the
service provider in question

• Usually involves first signing up as a developer for that
provider – free in most cases (not MS)

• You provide a name for the app and a “redirect URL”
(and usually more)

• On registering, your app you will be given a “client ID”
and a “client secret” (or “key”) for it to use to identify
itself to the provider

Getting Started

• Your application should use the OAuth2 DataFlex library
• Copy the OAuth2 directory and use OAuth2/OAuth2.js in

your index.html
• Drag a cOAuth2 component into a WebView
• Set its properties (there are many, but only a few need be

set in most cases)
• Define pre- and post-login behaviours, as well as those

for login failure
• Have a mechanism for triggering the login process (Send

Login of oOAuth2 object)

The DataFlex OAuth2 Component

• The OAuth2 authentication and
authorisation process is somewhat
complicated (although less so than its
predecessor, OAuth1)

• It involves multiple actors and interactions
in what is sometimes called…

The OAuth Dance

Using OAuth2

The
OAuth
Dance
Step 1

The
OAuth
Dance
Step 2

The
OAuth
Dance
Step 3

The
OAuth
Dance
Step 4

The
OAuth
Dance
Step 5

The
OAuth
Dance
Step 6

The
OAuth
Dance
Step 7

The
OAuth
Dance
Step 8

The
OAuth
Dance
Step 9

The
OAuth
Dance
Step 10

OAuth2 Demo

We can start making calls to the API
• HTTP requests, so we need an HTTP object
• We need to include our Access Token in

each request (usually by setting an HTTP
header)

• Data is (usually) in JSON format, so we
need to be able to compose and
decompose that

Now we have access...

● We need an object derived from the
cHttpTransfer class

● We need to capture the returned data
(possibly multiple strings)

● It may be binary data
● The data may be arbitrarily large
● We need to sub-class cHttpTransfer to

cope with these aspects

HTTP(S) Requests

Two new properties:
• Property UChar[] pucaData
• Property String psContentType
The UChar array can hold unlimited data
and does not care if it is binary or text

(Content type is stored just because we can)

Subclass: cHttpRequestUIG

Procedure OnDataReceived ;
String sContentType String sData

UChar[] ucaData
Get pucaData to ucaData
Set pucaData to (AppendArray(ucaData, ;

StringToUCharArray(sData)))
Set psContentType to sContentType

End_Procedure

Augment OnDataReceived Event

Procedure Reset
UChar[] empty
Set pucaData to empty
Set psContentType to ""

End_Procedure

Add Reset Method

Function psData Returns String
Function_Return ;
 (UCharArrayToString(pucaData(Self)))

End_Function

Add String Getter: psData

A new method was added to the
cHttpTransfer class in DataFlex 18.1:
HttpVerbAddrRequest

It will work for any HTTP verb, not only GET
and POST:
Get HttpVerbAddrRequest of oHttp sPath ;

(AddressOf(sInp)) (Length(sInp)) ;
bIsFile sVerb to iOK

Making the HTTP calls

Even if the call returns "OK" (actually 1), we
still need to check the HTTP status:

Get ResponseStatusCode of oHttp to iStat

Values in the 200-299 range are generally
OK (200-204 are common)

HTTP Response Status

We usually work with strings, not UChar
arrays, so:
Get_Argument_Size to iOldAS
Get pucaData of oHttp to ucaTest
Set_Argument_Size to ;

(SizeOfArray(ucaTest) + 1024)
Get psData of oHttp to sData
... do stuff with that string data ...

Set_Argument_Size to iOldAS

Handling Large Data

With SOAP web services, the generated Web
Service Client classes transformed XML into
DataFlex structs we could work with

We need to do the same thing with the
JSON data sent to and received from
RESTful web services

Dealing with JSON

Sture Andersen's StureApsPublicLib
contains a JsonFunctions package

He has also provided, as part of his VDFXray
program, a tool to generate JSON parsing
and composing code to/from DataFlex
structs based on that JsonFunctions
package

Sture to the rescue!

Based on Sture's work, I have written a
program which does a similar trick

But the other way around
Starting with JSON data, it generates
DataFlex structs and the code to do:

structVar → JSONstring
JSONstring → structVar

RESTGen

You can paste sample JSON into it, give it
some naming instructions and where the
resulting code should go, and it will create
the struct/handler code packages

You then create struct variables and pass
them to its methods:
Send StructToJsonString tData (&sJSON)
Send JsonStringToStruct (&sJSON) tData

RESTGen

RESTGen Demo

1. Start with sample JSON from our target
REST API (most providers will give you this)

2. Use RESTGen to create the JSON handling
code

3. Use an OAuth2 object to allow us access
4. Use a cHttpTransferUIG object to make

HttpVerbAddrRequest calls to the REST
service

Putting it all together...

REST Demo

Obviously what you can do depends on what
the service provider offers in their API
In your application you might...
● Manage a user's files and documents
● Send or read e-mail as the user
● Manage calendars, events and scheduling

for that user

So what can we do with this?

● Coordinate a company's social media and
YouTube strategy (multiple providers
would be involved)

● Integrate your application with an on-line
accounting provider

● Integrate your application with the
customer's SalesForce.com services

So what can we do with this?

● Actually anything that is on offer from the
ever growing list of providers and APIs…

● You might simply use J Random Surfer's
Google, or Facebook, or LinkedIn, or
whatever ID as a way to capture visitor
information on your web site… Let's just
look at that one...

So what can we do with this?

Thank you!
Any questions?

