The WebApp Custodian

as presented by Sture Andersen in Berlin at the EDUC 2016
conference.

EDUC

AL

The WebApp Custodian

The WebApp Custodian is DataFlex 18.2 webapp that is used to update other DataFlex
webapps running on the same server, and to do so via a browser ui.

It offers a convenience over having to establish a remote desktop session and doing an
update manually closing it down with WebApp Administrator and copying files over with
Windows Explorer.

With WebApp Custodian, you can get very short update cycles. You can update your
development server or test server or even a production server - from your development
machine within a few seconds.

You can NOT use the Custodian to restructure the database as part of an update. If there is
a need for that it’s right back to the remote desktop strategy. But in reality a great majority of

updates do not involve updates to the tables themselves.

If you find this interesting you may proceed to download the Custodian webapp deploy folder
at ftp.stureaps.dk:

e Download from ftp.stureaps.dk/software/dataflex/webappcustodian/

ftp://ftp.stureaps.dk/software/dataflex/webappcustodian/

Copy deploy folder to desired location on server
Reindex tables to server collate (dbbldr.exe)

Create 1 user with CustodianSetup.exe

Register the application with WebApp Administrator

You should create the user with a healthy password (CustodianSetup.exe):

B | Create user ot

Legin name |[admin

Full name |5ite Administrator

Password | i [Show

[]Login deactivated
Dataowner administrator
Site administrator
Allow WebService access
Created

Last login

Save Delete Cancel

You may now access the custodian by this url: http://{servername}/Custodian182/ and start
administrating the updates of the DataFlex 18.2 applications running on that server.

From the opening panel you can start and stop each webapp as in WebApp Administrator.

B webApp Custodian 18.2 >+ _

e
|
N
g» O

e) localhost/Custodian182/Index.html

WebApp Custodian (18.2) on server DESKTOP-46L39BV

Application name Status

Bedin2 running starﬂslop.l Open .l View updatedog l G
n

Nav1 running startistop Ope View update-log

Network182 running startistop Open View update-log
PROGRESS running sta_rtfstop Open View update-log
SoftwareUpdates182 running startistop Open View updatedog
Trex182 running startistop Open View update-log
WebOrder running startistop Open View update-log

WebOrderMobile running sta_rtfstop Open View update-log

Or you can click the “open” button and get this panel:

B webaApp Custodian 18.2 X =+ =

O
O localhost 2/Ir t ﬁ = :/. @

Prepare webapp update

WebApp name:| WebOrderMobile (18.2) Download table definitions to DFMatrix (fdx) to VDFXRay (.dbdef)

Deploy folder structure: Selected folder: | Programs Upload file(s) to selected folder:

Files in upload area

File name Size (bytes) Time stamp

remove

[Show current content of deploy area Remove all files from the update folder Update the WebApp

This is a screenshot from a development machine so there are more folders present than
one would expect from a deployed app (which would be something like apphtml, data and
programs).

The idea is that you select a folder to the left and then upload files to that folder by clicking
the button labelled Upload file(s) to selected folder. In the screenshot a new webapp.exe has
been uploaded to the programs folder.

Once the necessary number of updated files have been uploaded to the Custodian you may
click the Update the WebApp button.

You will be prompted for the reason for the update and then ...

In a split second the Custodian will take down the WebOrderMobile application (in this case),
copy over the files you have uploaded and take the application back online.

Note: For each update performed on an application a backup folder is created
containing the files that were overwritten. This folder may be copied back to the
deploy folder to fall back one version. Windows Explorer will ask you to confirm each
file of the fallback since it replaces a file already there.

The Custodian creates subfolder of your deployed applications folder called
CustodianRepository. The undo folders are found in there. They have impossible
names so they should be sorted and identified by creation date-time.

Down to the left of the panel there is a checkbox that can be used to change the operating
mode. If checked, it displays files currently present in the actual deploy area. The files can
then be downloaded. However, if you want to download a .dat file, you should probably stop
the application first.

A Consideration

There is an issue that is related to updating webapps in general, not just with the Custodian.
And that is related to how any active sessions will react to the updated server system.

You may ignore this issue during test and development, but for a production system, it
should at least be considered.

When a new program version is put into production, sessions that are already active will
become “out of synch” with the server, in a sense. At least some of the knowledge that the
javascript application got from the server when the session loaded, may no longer be
accurate. The javascript application simply carries on to run on outdated premises.

The programmer may have changed the name of a web-object. The browser app will
become very confused if can no longer “talk” the server object. Web-properties could have
different meanings etc.

For the application and its data to remain in synch we must force all active sessions to
reload when the webapp.exe is updated.

Note. The same sort of consideration could be applied to session-data stored on the
server, for example in the WebAppSession.dat record belonging to the session. This
implies that we should not only force the browser to reload. We should also invalidate
the current session record and thus force a new login.

While this applies no matter how you update your web-application, the issue is accentuated
when using the Custodian because the update only takes the system off-line for a very very
short time. Sessions are highly unlikely to notice.

(If they “notice”, the user will just get one of those http 500 errors and upon refresh he’s good
again because his browser reloads the app, once it is available again.)

A scent of a Strategy for handling

If we want to handle this situation gracefully, we must stamp each new session with the
timestamp of the webapp.exe file that created it. WebAppSession.WebappCompile TimeUTC
is used for that purpose in the code below.

Then, in the ValidateSession function of the ghoWebSessionManager object we must have
code that looks something like this included:

If (not(IsDebuggerPresent())) Begin // Not while working in the Studio!
If (FindCurrentWebAppRecord (ghoWebApp)) Begin // Think of this as a system table
// (the webapp has stored its own exe-file creation time in that table)
// Check if the webapp has been updated:
If (awWebApp.WebappCompileTimeUTC<>WebAppSession.WebappCompileTimeUTC) Begin
Reread WebAppSession
Move "N" to WebAppSession.Active // Close the session
SaveRecord WebAppSession
Unlock
Error 950 "Your application has been updated. The browser app will reload."
// refresh the WebApp at the client (because we closed the session
// this triggers a login)
Send NavigateRefresh of ghoWebApp
Function Return False
End
End
Else Begin
Error 950 "The application has not self-registered for automatic updates."
// refresh the WebApp at the client (triggers a login)
Send NavigateRefresh of ghoWebApp
Function Return False
End
End

The first line makes sure that the code does not trigger when run under the debugger. In that
case we most likely have just compiled our webapp, and we do not want the browser to
trigger an extra reload every time we do that.

And this finishes the resume of the EDUC presentation. | hope it brought you something.

EI]UC

2016

Thank you for your
attention.

Sture Andersen
May 2016

